Characterizing the cortical activity through which pain emerges from nociception.
نویسندگان
چکیده
Nociception begins when Adelta- and C-nociceptors are activated. However, the processing of nociceptive input by the cortex is required before pain can be consciously experienced from nociception. To characterize the cortical activity related to the emergence of this experience, we recorded, in humans, laser-evoked potentials elicited by physically identical nociceptive stimuli that were either perceived or unperceived. Infrared laser pulses, which selectively activate skin nociceptors, were delivered to the hand dorsum either as a pair of rapidly succeeding and spatially displaced stimuli (two-thirds of trials) or as a single stimulus (one-third of trials). After each trial, subjects reported whether one or two distinct painful pinprick sensations, associated with Adelta-nociceptor activation, had been perceived. The psychophysical feedback after each pair of stimuli was used to adjust the interstimulus interval (ISI) of the subsequent pair: when a single percept was reported, ISI was increased by 40 ms; when two distinct percepts were reported, ISI was decreased by 40 ms. This adaptive algorithm ensured that the probability of perceiving the second stimulus of the pair tended toward 0.5. We found that the magnitude of the early-latency N1 wave was similar between perceived and unperceived stimuli, whereas the magnitudes of the later N2 and P2 waves were reduced when stimuli were unperceived. These findings suggest that the N1 wave represents an early stage of sensory processing related to the ascending nociceptive input, whereas the N2 and P2 waves represent a later stage of processing related, directly or indirectly, to the perceptual outcome of this nociceptive input.
منابع مشابه
The Development of Nociceptive Network Activity in the Somatosensory Cortex of Freely Moving Rat Pups
Cortical perception of noxious stimulation is an essential component of pain experience but it is not known how cortical nociceptive activity emerges during brain development. Here we use continuous telemetric electrocorticogram (ECoG) recording from the primary somatosensory cortex (S1) of awake active rat pups to map functional nociceptive processing in the developing brain over the first 4 w...
متن کاملBerberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner
BACKGROUND AND AIMS Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests. METHODS The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bow...
متن کاملThalamocortical Loops and Information Processing
A pathophysiological chain reaction at the origin of neurogenic pain. It consists of: 1) a reduction of excitatory inputs onto thalamic cells, which results in cell membrane hyperpolarization, 2) the production of low-threshold calcium spike bursts by deinactivation of calcium T-channels, discharging at low (theta) frequency, 3) a progressive increase of the number of thalamocortical modules di...
متن کاملThe analgesic effect of crossing the arms.
The ability to determine precisely the location of sensory stimuli is fundamental to how we interact with the world; indeed, to our survival. Crossing the hands over the body midline impairs this ability to localize tactile stimuli. We hypothesized that crossing the arms would modulate the intensity of pain evoked by noxious stimulation of the hand. In two separate experiments, we show (1) that...
متن کاملThe effects of imidazoline compounds on nociception in animal pain model
The discovery of imidazoline ligands has opened up a new field of study. The investigation of imidazoline actions independent of adrenoceptors started in the mid 1980s. Imidazoline receptors are classified in several subtypes, I1, I2 and I3 binding sites. Although imidazoline sites have been the subjects of research for several years, but there is still controversy about their actions especiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 24 شماره
صفحات -
تاریخ انتشار 2009